A SIMPLE THEORY OF BREAKDOWN OF MONATOMIC NONLIGHT
GASES IN FIELDS OF ANY FREQUENCY FROM LOW TO OPTICAL

A. 1. Vyskrebentsev and Yu., P, Raizer UDC 533.93:532+533/633.6

Simple, compact, and universal equations are derived for the estimate of the frequencies of
ionization and threshold breakdown fields in monatomic not-too-light gases. The equations
have a large range of applicability; they are valid for fields of any frequency: constant
field, high-frequency, microwave, optical (i.e., for the description of laser breakdown), and
for any pressure, duration of the action of the field, and dimension., The equation for the
breakdown threshold ensures reasonable agreement with experiment and can be useful for
estimates in those cases where experimental data are not available.

A number of works [1-13] (also see the review on laser flash in [14, 15]) have been devoted to the
avalanche theory of breakdown of gases by optical radiation, its formulation, solution of the equations,
elucidation of the physical details, refinement of the mathematical statements, and computations of the
threshold fields. In [1] the theory was based on the quantum kinetic equation for the energy distribution
function of electrons, and it was shown that if the energy of the photon is small compared to the character-
istic energy of the electrons, the quantum equation reduces to the classical equation with adequate accu-
racy, which, in particular, describes the breakdown by microwave radiation, The theory of microwave
breakdown has been discussed in detail in the book [16], and in a number of cases it gives good agreement
with experiment. However, the computations are generally very complex and are not suitable for a clear
physical interpretation of the effects.

In the present article a simple approximate theory of avalanche breakdown is proposed. The ob-
tained equations clearly demonstrate the basic physical characteristics of the development of electron
avalanche in electromagnetic fields and the regularities of the breakdown and make it possible to obtain
rapid estimates.

The theory put forward here is based on the concepts and approximations of [1], a more correct re-
fined variant of the theory of [1], whose results were given in a short communication without derivation
[17] for the explanation of the experimental results on the breakdown of gases by CO, laser radiation, pre-
sented there, However, compared to the computation in [17] the computation here contains significant im-
provement,

1. Formulation of the Problem and Simplifications. Following the arguments of [1] about the possi-
bility of description of optical breakdown on the basis of the classical equation, we shall start from the
equation for the energy distribution function of electrons n(e, t), which we write in the form [1]
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Here j is the "flux" of electrons along the energy axis £, D is the corresponding "diffusion" coeffi-
cient, E is the root-mean-square electric field of the electromagnetic wave E = E;/ V2, where E, is the
amplitude, w is the frequency of the field, vy, is the effective frequency of elastic collisions of electrons
with atoms, ug is the "velocity" determined by elastic losses, m and M are masses of electrons and atoms,
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and @ includes terms describing inelastic colligions, production of electrons, and losses connected with the
diffusion drift of electrons from the region of action of the field,

The distribution function is normalized to the density of the electrons:

gﬂn(s,t)da:Ne(t) . (1.3)

0

In the general form the problem is very complex; therefore, we shall restrict the range of investi-
gated conditions and introduce certain simplifications.

1, We shall consider only monatomic gases in order to disregard the excitation of molecular oscilla-
tions and the excitation of lower electronic levels,

2, We shall consider only not-too-light gases in order to neglect elastic energy losses of electrons.

3. The excitation and ionization cross sections of atoms 0 *(¢), 04(¢) grow from zero at the cor-
responding potentials I*, I on increasing the electron energy € . We introduce the quantities I, *, I;, which
slightly exceed (approximately by 1 eV) I*, I, We neglect the corresponding collisions for & < I;*, I, and
the frequency of exciting collisions in the interval I;* < & < Ij; v* = Nyv* o* is assumed constant (Ng is
the density of atoms, v*, o* are some mean velocity of electron and excitation cross section for the given
interval),

4. We assume that the electrons, having attained energy I, instantaneously experience inelastic col-
lision, ionizing an atom with probability § and exciting it with a probability 1 — 3.

5. We assume that electrons undergoing inelastic collisions and also electrons knocked out from
atoms as a result of ionization appear with "zero” energy, even though actually they have a small energy.

6. We assume the frequency of elastic collisions vy, and the characteristic time of diffusion drift of
electrons from the region of action of the field 7 4 to be constant. The frequency of the diffusion drifts is
vy = 74-1 =D/ A%, where D is the coefficient of free diffusion of electrons in ordinary space and A is the
diffusion length of the order of the characteristic dimension of the region.t

With these approximations Eq, (1.1) becomes

.Z_?:—%Qﬁv*n—vdn, j:~D%Z—-—|—nu, (1.4)
0 for #
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1 for I* eI, .

The action of the inelastic collisions for € > I; and the sources of electrons in the range of small
energies are replaced by the corresponding boundary conditions. For & =, there is an infinite power
"sink" and, hence,

n=0fore=1, . (1.6)

By definition j(e, t) is the number of electrons per cm?®, which cross the point ¢ on the energy axis
per second; j; = j(Ij, t) electrons reach the "sink" at £ = I; per second and slowly lose their energy up to
"zero," while a fraction j;8 of these gets doubled. Besides, electrons which experienced inelastic colli-
sions in the energy range I < & < I are produced with zero energy. Thus the rate of production or the
flux j, =j(0, t) is

Iy

jo=i( =B+ 28 + v+ { nde . €.

Il‘
This is also the second boundary condition.

At the boundary of the region when & = L;*, where the function 6(¢) is discontinuous according to
equation (1.5), n and j are continuous, i.e., 9n/9e is continuous.

T For a cylinder of diameter d and height L, 1/A® = (n/d)* + (2 .4 /L); for a sphere, A =d/27.
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In this approximation the average ionization energy over the entire spectrum

1
vi= g S nvs; (e) de (1.8

0

is determined by the equality v {Ne = j;8. If Eq. (1.4) is integrated over the entire spectrum taking account
of this last equality and Eqs. (1.6) and (1.7), we obtain the phenomenological kinetic equation

ANJdt = viN, — veNg =N,/ ©, 1/0 =v; — v, . (1.9)

In a field of constant amplitude the stationary spectrum is established very soon, and it is clear
from (1.9) that the solution of Eq. (1.4) should be sought in the form

n (e, t) = n (g) exp (¢ / ©)

where @ is the as yet unknown time constant of avalanche, which is related to the unknown ionization fre-
quency v through (1.9).

The function n(e) satisfies the equation
@it &vn+-oL =0, j=—DI |y (1.10)

and the boundary conditions (1.6) and (1.7). Since the equation is homogeneous, one of the boundary condi-
tions is "superfluous" and this offers the possibility of determining the functions »;(E) and ®(E).

We shall call the appearance of N, electrons in the gas after a time t; of the action of the electromag-
netic pulse for N initial (seed) electrons the "breakdown." Then obviously the threshold field E is deter-
mined from the condition

1/©(E) =vi(E) —vqg =¢2In N,/ N, , (1.11)
In the case of sufficiently long pulses (t; — «), we obtain the "stationary" criterion of the breakdown:
Vi=V4 (B=00),

2. Solution of the Equations and Ionization Frequency. The system of equations (1.10), (1.6), (1.7)
can be solved exactly. The general solution of (1.10) has the form ’

n=C,exp[2 }/(vi 4+ Ov¥)e/A] + Crexp[— 2‘]/(\7{ -+ ov*) ejd] . 2.1)

Subjecting it to the boundary conditions, we obtain a system of four linear equations for the four con-
stants of integration Cy , (in the two regions). Equating the determinant of this system to zero, we obtain
the transcendental equation for the unknown vi.

Omitting the simple but quite long intermediate operations, we give this equation in the final dimen-
sionless form

ela-ty (ch -%’— + zsh —;J—\) — e~{a-y (ch -Z— —zsh ~Z—> =
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where we have introduced the following notation:

y=2 V(vi +v¥)[*¥/A =at ]/6 (vi +v¥) jvg
2=V Wi+ v v; =V1++vv;, a=VIj*, ve=342I,. (2.3)

The quantity vy = 1 /Tg represents the "frequency of the energy sets" because Ty is the time re-
quired, according to the elementary theory, for the electrons in the field to acquire energy I, sufficient for
multiplication. We recall that according to the elementary theory de /dt = 3A /2.

Numerically,

_ AT50BE2 wy  6.34408 vy,
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A where S = cE*/47 is the energy flux density in the electromagnetic wave, E in
mad W | V/cm, I in eV, w, by, in sec™, and S in W/em?,

/ Equation (2.2) together with equations (2.3) determines the dimensionless
t /! dependence of vi/v* on vg/v*, which contains two parameters @ and g. The
parameter a is practically the same for most monatomic gases; it can be taken
equal to 1.2. An investigation of the excitation and ionization cross sections of a
majority of atoms shows that 3 can also be taken to be equal for all atoms and we

N

4

4 / can put § = 0.2, However, one significant fact should be noted here. Electrons
1 | with energies between the excitation and ionization potentials mainly excite the
/ ] lower excited levels, and this results in energy losses of the electrons (in any
Ykd / / case, at the frequency of neodymium laser and lower frequencies), Electrons with
5 7 energies € > I; excite mainly the upper states. During the breakdown of gases by
J // :i,,,cp ruby and neodymium laser radiations (Aw = 1.78 and 1.17 eV) these states are
35wty s owt g rapidly ionized as a result of one- or two-quanta photoelectric effect, so that the
Fig, 1 excitation of the upper states, just as the ionization by electron impact, leads to a

fast breeding. Therefore, in these cases we can take g =1,

Thus Egs. (2 .2), (2.3) give two universal dimensionless functions »j /v * = F(vg /v ¥) for g =0.2
(breakdown in constant field at high and microwave frequencies by longwave infrared radiation of CO, laser,
A =106u,Hw =0.124 eV) and 8 =1 (light frequencies). These functions, i.e., the dimensionless ioniza-
tion frequencies, are plotted in Fig. 1 (ordinate) as functions of the dimensionless frequency of the energy
sets, which at the same time serves as the dimensionless function determining the threshold field for the
breakdown, Curve 1 is for § =0.2,curve 2 forg =1,

In the two limiting cases the solutions have a simple form accessible to a clear physical interpreta-
tion. If the excitation losses are small, v * v, z—1, Eq. (2.2) with 8 =1 reduces to the equality
sinh ay = 2ay, from which we get ay =2,18 and v = 0.8V . The ionization frequency practically coincided
with the frequency of energy sets, which is quite natural, In particular, this case corresponds to the re-
gime in which all excited atoms are rapidly ionized under the action of the radiation (here I should be re-
placed by I*). This perhaps occurs in the breakdown of gases by the radiation from a ruby laser (see [1,
7,12, 14]).

If the excitation losses are significant
VSvg y>1, w<vg 2>1, gz a Vv <1
Eqg. (1.3) has the asymptotic solution
) 2~y exp l(a — 1) yl /12 af

from which we have

a

v; = vpafa?, o = 2aexp (— a—1 V6v¥vg ) . (2.5)

It is easy to verify that the quantity « in this case represents the ratio of the fluxes j(I;)/ ja*), ie,,
nothing else than the probability that an electron "skips" the "unsafe" zone Li* < & < I; and attains the
energy I, when it has a chance of producing multiplication,

Thus, as was to be expected, with an accuracy up to a coefficient @’ ~ 1 the ionization frequency is
determined by the frequency of the energy sets and by the probabilities «, B that the electron attains the
energy I; and after this produces the ionization. The electron executes k = 1/a8 cycles of motion along the
energy axis, picking up and losing energy before it multiplies; accordingly the time required for new gener-
ation increases by a factor k,

3. Threshold fields. We denote by & the function inverse to F determining the dimensionless ioniza-
tion frequency. Then we have

vg [vE = D (v; /v¥) |

Obviously function ®(n) gives the same graph as in Fig. 1 if the argument is assumed to be numbers
plotted along the ordinate in Fig, 1 and the function is taken as numbers plotted along the abscissa. We
write the general condition of breakdown (1.11) in the form
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vi=vg+vi  (vi=£ftInN, /Ny,
then the threshold field is determined from the equality
vg [ v = @ [(vg 4 v;) [ v¥]
which after substituting the expression for v g gives

B — I (@2 4 vp?)  v* @ (n), = Mot ve . (3.1)

& Vi = v¥

Estimates show that as the average energy € in the expression for the spatial diffusion coefficient
averaged over the spectrum

D = 2/ 3 v,(v)> = 28/3mvy,»

one can take one half of the excitation potential of the atoms: & ~ I#/2,

Thus, for the computation of the threshold field for the breakdown of different gases at different fre-
quencies, pressures, and dimensions we have a very compact numerical equation:

E? = 5.7-4078], (0 4 vyn2) VVZ ®(n) (3.2)

M =(vg -t v)/v¥,  vg=25.8.-1011* v A%,
Here and below E is in V/cem; I in eV; w,¥ in sec™; and A in cm; the function ®(n) is given by Fig.1.

The case of "stationary" breakdown, when vy <« v and v = v, has a large range of applications,
Almost all the cases encountered in practice, i.e., breakdown by constant, high-frequency, microwave fields,
and infrared radiation of CO, laser, come under this category. In this case the limiting laws of breakdown
are valid, It is also possible to determine asymptotic analytical expressions for E. At low pressures p or
large frequencies w? > vy’ and when diffusion losses predominate

a~1,n=v/v¥~1/p>—>oc0, ®=n/f

from (3.2) ,we obtain

II* @ ©
L (3.3)

ie., E/w is a function of pA.

At high pressures or low frequencies (in particular in constant field) for ¢ we obtain the asymptotic
equation

@ = 6( a1 )2 [0 (203D /)]2

a

and in this case (p =, n — 0) we obtain

58407 YV Ivwv* (01— V Ii*/ 1) (3.9

L= 1n (2a33® / 1)

where & under the logarithmic symbol can be taken as constant. It is evident then that "breakdown voltage™
EA is a function of pA (reminiscent of the well-known Paschen curves) and that the asymptotic dependence
of the threshold on the pressure for p —« has the form

E ~ p/ [const + In(pA)] ,

ie., grows slightly more slowly than p and depends on the dimensions only logarithmically.

4, Comparison with Experiment. By way of illustration we use equation (3.2) for computing the
thresholds for breakdown of argon and xenon in different frequency ranges.t For argon we take vy =
7 - 109p, v* =2,6 -10% (according to the data presented in [16]), I, = 16.8 eV, I* =11.5 eV; for xenon,
vm =1.5+10', v * = 4 -10%p (this last value is chosen on the basis of the data in [18]), I, =13.1 eV, I* =
84 eV; here p is in torr.

tElastic losses in argon are small, and in xenon they are generally insignificant,

36



£, .V/cm

N \
w L INY RN
N
j Z \, N \ L %
7 A Y \ ~ NG /4. l
2 ™~ AR v 41‘
N o ke A
0 ~} y.
P N1
401 a1 10 7 4, torr
Fig, 2
£, V/cm i
i i 4—1 Er V/Cm .
S
03218 A 7 I AI//l
+3 b ~a N /-.
NE: — 7 il i " s ®
}\ r. i dco 0o c
¢ i l
w2385 7 235 0 238 tor 7 20 2 atm
Fig,. 3 Fig. 4
/177[ 0 | | -
) & photons-cm ™"«
/e ree-L10-%
S ] o gldsee 0
[ —
J L 1\ TF=H i \V\V‘V‘V& v vl vy
. s A
R R R 5 £ torr ¢ / z J Aoy’
Fig.5 Tig.6

The threshold fields for microwave breakdown of argon are shown in Fig. 2. The continuous curves
pertain to computations, the dashes to experiment, The experimental data are taken from [16]. Curve 1 is
for the frequency of the field equal to 2.8 MHz (w = 1.8 - 1010 rad/sec), A = 0.15 cm; curve 2 for the fre-
quency equal to 0.99 GHz (w = 6.2 - 10° rad/sec), A = 0,63 mm, There are no computations for argon in
[16]. The threshold fields for microwave breakdown of xenon are shown in Fig. 3. The experimental data
were taken from [16]. The frequency of the field is 2.8 MHz, A = 0.10 cm, The continuous curve pertains
to the computation. In [16] there are no computations for xenon.

The threshold fields for the breakdown of argon and xenon by the radiation from CO, laser (\ =
10.6 4, w =1.99 - 10! rad/sec) are given in Fig. 4. The experimental data were taken from [17]; the pulse
length t; ~ 1 psec, the radius of the focus 4 - 10 c¢m; black squares are for argon, white for xenon. The
upper curve pertains to computation for argon, the lower to the computation for xenon, The threshold fields
for the breakdown of argon by neodymium laser are shown in Fig. 5. The experimental points are taken
from [19]. The pulse length t; = 50 nsec, A =1.64 - 1073 cm. The continuous curve gives the result of the
computation. The threshold flux density of photons for the breakdown of xenon by neodymium laser are
given in Fig. 6. Here the experimental points are taken from [20]. The pulse length is 35nsec,and the
radius of the focus is 4.5 - 10~% ¢cm, The continuous curves pertain to the computation.

Furthermore, on the basis of the general equation for the ionization frequency obtained above, we com-
puted the first ionization coefficient of Townsend for a constant field @i = vi/u E, where pu =e/mv m 18 the
mobility. From (2 .5) the asymptotic equation for a4 (at large pressures and small E/ p) is

@; = A;Ee-BriE, A, = 23p/I,

—_— —_ *
S RN VL

; (3.5)
a e2p? P

where Aj is in ion pairs/V and B is in V/cm - torr. For argon with the same constants B = 53, Aj = 0.04.
If the experimental curve (graph 4.49 in [21]) is approximated by function (3.5), we obtain B = 31, A{ = 0.01.
For xenon, the agreement is still better: B = 85, A; = 0.05 from the computation; B = 85, Aj =0.1 from the
experiment,
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Thus the approximate theory discussed above, which led to a very simple and universal equation (3.2)

for the breakdown threshold gives reasonable agreement with the experiment in all frequency ranges from
constant field to optical and in a wide range of pressures clearly demonstrating the characteristic regulari-
ties of the phenomenon.
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